New Transition-metal Carbonyl and Nitrosyl Sulphur Complexes

By J. LOCKE and J. A. MCCLEVERTY

(Department of Chemistry, The University, Sheffield, 10)

 T_{HE} maleonitriledithiolate (cis-1, 2-dicyanoethylene-1.2-dithiolate) anion¹ (MNT²⁻) forms complexes with transition metals in high oxidation states and in unusual electronic configurations.² The preparations and properties of some derivatives of metal carbonyls and nitrosyls with metal ions in low oxidation states are now reported.

A brick red compound, formulated as

$$\{Ph_{3}PCH_{3}\}$$
 $\{Mn(CO)_{4}MNT\},$

formally containing manganese(I), was isolated from the reaction of Mn(CO)₄Br and Na₂MNT in methanol. The compound is monomeric, $\Lambda = 76$ mhos cm.² moles⁻¹ in a 10^{-4} M-nitromethane solution (Found: C, 55.6; H, 3.5; N, 5.4; Mn, 9.1. C₂₇H₁₈MnN₂O₄PS₂ requires C, 55.5; H, 3.1; N, 4.8; Mn, 9.4%). The infrared spectrum (Table) is also consistent with this formulation.

 $[Mo(NO)_2Cl_2]_n^3$ reacts similarly with Na₂MNT in methanol to form a deep green complex, isolated nitrosyl groups, the nitrosyl stretching frequencies occurring in the region assigned to co-ordinated "NO+" groups.⁴ The complex formally contains molybdenum in its zero oxidation state. It seems possible that there are two geometrical isomers although no attempt has yet been made to separate them.

The infrared spectral data can be compared with those of their dialkyldithiocarbamate analogues and some halides of similar molecular symmetry. It is seen from the spectra of the molybdenum compounds that the nitrosyl stretching frequencies in the anionic MNT complex are higher than might have been expected since the presence of a negative charge on the metal atom should reduce the symmetric and antisymmetric nitrosyl stretching frequencies by at least 80 cm.⁻¹ from the value in Mo(NO)₂(S₂CNMe₂)_{2.5} While the dithiocarbamate ligand can function as a weak electron donor, the effect on carbonyl stretching frequencies

The carbonvl a	and nitrosvl	stretching	freauencies	of	manganese	and	molvbdeunm	complexes
			J	-)				

Compound	Solvent	Carb	Ref.								
$ \begin{array}{l} \{ Mn(CO)_4 MNT \}^- \\ Mn(CO)_4 S_2 CNEt_2 \\ \{ Mn(CO)_4 Cl_2 \}^- \\ [Mn(CO)_4 Cl]_2 \end{array} $	CHCl ₃ CHCl ₃ Nujol CCl₄	2075w 2091 2040 2104	2010vs 2019 2002 2045	1982s 1996 1969 2012	1933m 1953 1915 1977	this work 6 8 9					
	Nitrosyl stretching modes										
$\begin{array}{llllllllllllllllllllllllllllllllllll$		174 177 172 180	42s 163 70s 167 20 160 05s 169	83s 70s)0 90s 1	600w	this work 5 3 3					

as ${Ph_4P}_2$ {Mo(NO)₂(MNT)₂}, which is also momentic, $\Lambda = 172$ mhos cm.² moles⁻¹ in a 10-4M-nitromethane solution (Found: C, 59.7; H, 3.6; N, 7.1. $C_{56}H_{40}MoN_6O_2P_2S_4$ requires C, 60.3; H, 3.6; N, 7.5%). The infrared spectrum (Table) is in accord with a *cis*-configuration of the is small⁶ and a similar situation would be expected in the nitrosyl complexes. An explanation of these new results may be that the MNT ligand is functioning as a π -acceptor and so is competing with the nitrosyl ligands for the excess of negative charge. It is more difficult to observe this effect

¹G. Bähr and G. Schleitzer, Chem. Ber., 1957, 90, 438.

- ⁴ J. Lewis, R. J. Irving, and G. Wilkinson, J. Inorg. Nuclear Chem., 1958, 7, 32.
 ⁵ F. A. Cotton, B. F. G. Johnson, and J. A. McCleverty, to be published.
 ⁶ F. A. Cotton and J. A. McCleverty, Inorg. Chem., 1964, 3, 1398.

² A. Davison, N. Edelstein, R. H. Holm, and A. H. Maki, Inorg. Chem., 1965, 4, 55, and references therein; S. I. Shupack, E. Billig, R. J. H. Clark, R. Williams, and H. B. Gray, J. Amer. Chem. Soc., 1964, 86, 4594, and references therein.

³ F. A. Cotton and B. F. G. Johnson, Inorg. Chem., 1964, 3, 1609.

in the manganese carbonyl compounds because of the complexity of the carbonyl stretching modes. Certainly the reduction in all four carbonyl stretching frequencies is *smaller* in the two sulphur complexes on adding a negative charge than for the two chlorides; no definite and rigorous comparison, however, can be made.

It has been suggested⁷ that the MNT ligand and its analogues $([(CF_3)_2C_2S_2]_2$ and $\{Ph_2C_2S_2\}^{2-}$ donate electrons to metals in what are apparently high oxidation states. This is not inconsistent with the ligand having electron accepting properties when the metals are in low oxidation states.

(Received, February 17th, 1965.)

⁷ A. Davison, N. Edelstein, R. H. Holm, and A. H. Maki, J. Amer. Chem. Soc., 1964, 86, 2799.

⁸ E. W. Abel and I. S. Butler, J., 1964, 434.
 ⁹ F. A. Cotton, Inorg. Chem., 1964, 3, 702.